首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1037篇
  免费   139篇
  国内免费   32篇
  2023年   35篇
  2022年   33篇
  2021年   51篇
  2020年   38篇
  2019年   52篇
  2018年   49篇
  2017年   29篇
  2016年   36篇
  2015年   33篇
  2014年   69篇
  2013年   63篇
  2012年   33篇
  2011年   31篇
  2010年   31篇
  2009年   36篇
  2008年   51篇
  2007年   31篇
  2006年   35篇
  2005年   20篇
  2004年   28篇
  2003年   34篇
  2002年   22篇
  2001年   27篇
  2000年   25篇
  1999年   24篇
  1998年   18篇
  1997年   24篇
  1996年   21篇
  1995年   15篇
  1994年   13篇
  1993年   15篇
  1992年   17篇
  1991年   7篇
  1990年   17篇
  1989年   10篇
  1988年   6篇
  1987年   12篇
  1986年   9篇
  1985年   20篇
  1984年   13篇
  1983年   15篇
  1982年   9篇
  1981年   8篇
  1980年   11篇
  1979年   7篇
  1978年   8篇
  1977年   3篇
  1973年   4篇
  1972年   2篇
  1971年   3篇
排序方式: 共有1208条查询结果,搜索用时 15 毫秒
991.
There is a steadily increasing need to expand sustainable resources, and carbohydrates are anticipated to play an important role in this respect, both for bulk and fine chemical preparation. The enzyme alpha-(1-->4)-glucan lyase degrades starch to 1,5-anhydro-D-fructose. This compound, which has three different functional properties, a prochiral center together with a permanent pyran ring, renders it a potential chiral building block for the synthesis of valuable and potentially biologically active compounds. 1,5-Anhydro-D-fructose is found in natural materials as a degradation product of alpha-(1-->4)-glucans. The occurrence of lyases and the metabolism of 1,5-anhydro-D-fructose are reviewed in the biological part of this article. In the chemical part, the elucidated structure of 1,5-anhydro-D-fructose will be presented together with simple stereoselective conversions into hydroxy/amino 1,5-anhydro hexitols and a nojirimycin analogue. Synthesis of 6-O-acylated derivatives of 1,5-anhydro-D-fructose substituted with long fatty acid residues is carried out using commercially available enzymes. Those reactions lead to compounds with potential emulsifying properties. The use of protected derivatives of 1,5-anhydro-D-fructose for the synthesis of natural products is likewise reviewed. The potential utilization of this chemical building block is far from being exhausted. Since 1,5-anhydro-D-fructose now is accessible in larger amounts through a simple-enzyme catalyzed degradation of starch by alpha-(1-->4)-glucan lyase, the application of 1,5-anhydro-D-fructose may be considered a valuable contribution to the utilization of carbohydrates as the most abundant resource of sustainable raw materials.  相似文献   
992.
To understand the mechanism of the very slow block to polyspermy in physiologically polyspermic eggs of the newt Cynops pyrrhogaster, we used confocal laser microscopy to determine the distribution of gamma-tubulin and cyclin B1 in fertilized eggs. More gamma-tubulin was localized in the animal hemisphere than in the vegetal. The centrosomes of the principal sperm nucleus and the zygote nucleus had much accumulated gamma-tubulin, but little gamma-tubulin was associated with the centrosomes of the accessory sperm nuclei. These results are consistent with observations that the largest sperm aster is associated with the principal sperm nucleus. More cyclin B1 appeared in the animal hemisphere than in the vegetal at the end of interphase. The zygote nucleus had much accumulated cyclin B1, but little cyclin B1 was associated with the accessory sperm nuclei. Cyclin B1 disappeared earlier around the zygote nucleus at metaphase than around the accessory sperm nuclei. These findings correspond well with the earlier entry and exit into metaphase in the zygote nucleus than in the accessory sperm nuclei in newt eggs, supporting our maturation-promoting factor (MPF) model that accounts for the mechanism of nuclear degeneration in physiologically polyspermic eggs. Cyclin B1 began to accumulate in the nucleus during interphase in synchronous cleavage, and its greatest expression was in the centrosomes and the nucleus at prometaphase.  相似文献   
993.
Using a data set of protein translations associated with map positions in the human genome, we identified 1520 mapped highly conserved gene families. By comparing sharing of families between genomic windows, we identified 92 potentially duplicated blocks in the human genome containing 422 duplicated members of these families. Using branching order in the phylogenetic trees, we timed gene duplication events in these families relative to the primate-rodent divergence, the amniote-amphibian divergence, and the deuterostome-protostome divergence. The results showed similar patterns of gene duplication times within duplicated blocks and outside duplicated blocks. Both within and outside duplicated blocks, numerous duplications were timed prior to the deuterostome-protostome divergence, whereas others occurred after the amniote-amphibian divergence. Thus, neither gene duplication in general nor duplication of genomic blocks could be attributed entirely to polyploidization early in vertebrate history. The strongest signal in the data was a tendency for intrachromosomal duplications to be more recent than interchromosomal duplications, consistent with a model whereby tandem duplication-whether of single genes or of genomic blocks-may be followed by eventual separation of duplicates due to chromosomal rearrangements. The rate of separation of tandemly duplicated gene pairs onto separated chromosomes in the human lineage was estimated at 1.7 x 10(-9) per gene-pair per year.  相似文献   
994.
We have characterized a cold-induced, boiling stable antifreeze protein. This highly active ice recrystallization inhibition protein shows a much lower thermal hysteresis effect and displays binding behavior that is uncharacteristic of any AFP from fish or insects. Ice-binding studies show it binds to the (1 0 1 0) plane of ice and FTIR studies reveal that it has an unusual type of highly beta-sheeted secondary structure. Ice-binding studies of both glycosylated and nonglycosylated expressed forms indicate that it adsorbs to ice through the protein backbone. These results are discussed in light of the currently proposed mechanisms of AFP action.  相似文献   
995.
Adult bone marrow-derived stem cells (BMDC) have been shown to contribute to numerous tissues after transplantation into a new host. However, whether the participation of these cells is part of the normal response to injury remains a matter of debate. Using parabiotically joined pairs of genetically labeled and wildtype mice, we show here that irradiation-induced damage of the target tissue, injection of bone marrow into the circulation, and immunological perturbation that are consequences of bone marrow transplantation are not necessary for bone marrow contribution to myofibers. Moreover, severe toxin-induced damage is not a prerequisite, as BMDC contribution to muscle is enhanced in response to increased muscle activity resulting from muscle overloading or forced exercise. Indeed, these two forms of muscle stress result in much more rapid contribution (within 1 month) than voluntary running (6 months). These results indicate that BMDC contribute to myofibers in response to physiologic stresses encountered by healthy organisms throughout life.  相似文献   
996.
Cyclic nucleotide-gated (CNG) ion channels are nonselective cation channels with a high permeability for Ca(2+). Not surprisingly, they are blocked by a number of Ca(2+) channel blockers including tetracaine, pimozide, and diltiazem. We studied the effects of dequalinium, an extracellular blocker of the small conductance Ca(2+)-activated K(+) channel. We previously noted that dequalinium is a high-affinity blocker of CNGA1 channels from the intracellular side, with little or no state dependence at 0 mV. Here we examined block by dequalinium at a broad range of voltages in both CNGA1 and CNGA2 channels. We found that dequalinium block was mildly state dependent for both channels, with the affinity for closed channels 3-5 times higher than that for open channels. Mutations in the S4-S5 linker did not alter the affinity of open channels for dequalinium, but increased the affinity of closed channels by 10-20-fold. The state-specific effect of these mutations raises the question of whether/how the S4-S5 linker alters the binding of a blocker within the ion permeation pathway.  相似文献   
997.
BACKGROUND: Although some cationic reagents, such as polybrene, improve gene transduction in vitro, their use in vivo is prohibited due to their toxicity to the exposed cells. This paper demonstrates that a new cationic reagent, poly(ethylene glycol)-poly(L-lysine) block copolymer (PEG-PLL), improves gene transduction with retroviral vectors without increasing cell toxicity. METHODS: A retroviral vector derived from the Moloney leukemia virus, containing the lacZ gene, was modified with PEG-PLL prior to transduction into NIH3T3, Lewis lung carcinoma, and primary cultured mouse brain cells. LacZ transduction efficacy was evaluated by counting the number of X-Gal-positive cells. RESULTS: We have demonstrated that PEG-PLL is able to stably modify the viral particle surface due to the affinity of the PEG moiety to the biomembrane, and neutralizes negative charges by the cationic nature of the poly-lysine residue. Thus, PEG-PLL increased the gene transduction efficiency and minimized cell toxicity because free PEG-PLL was removable by centrifugation. We have shown that PEG-PLL increased the viral gene transduction efficiency 3- to 7-fold with NIH3T3 or Lewis lung carcinoma cell lines without increasing cytotoxicity. It improved retroviral gene transduction efficacy even against labile cells, such as primary cultured brain cells. CONCLUSIONS: PEG-PLL is a novel reagent that improves retroviral gene transduction efficacy without increasing cytotoxicity.  相似文献   
998.
The interaction of ryanodine and derivatives of ryanodine with the high affinity binding site on the ryanodine receptor (RyR) channel brings about a characteristic modification of channel function. In all cases, channel open probability increases dramatically and single-channel current amplitude is reduced. The amplitude of the ryanoid-modified conductance state is determined by structural features of the ligand. An investigation of ion handling in the ryanodine-modified conductance state has established that reduced conductance results from changes in both the affinity of the channel for permeant ions and the relative permeability of ions within the channel (Lindsay, A.R.G., A. Tinker, and A.J. Williams. 1994. J. Gen. Physiol. 104:425-447). It has been proposed that these alterations result from a reorganization of channel structure induced by the binding of the ryanoid. The experiments reported here provide direct evidence for ryanoid-induced restructuring of RyR. TEA+ is a concentration- and voltage-dependent blocker of RyR in the absence of ryanoids. We have investigated block of K+ current by TEA+ in the unmodified open state and modified conductance states of RyR induced by 21-amino-9alpha-hydroxyryanodine, 21-azido-9alpha-hydroxyryanodine, ryanodol, and 21-p-nitrobenzoylamino-9alpha-hydroxyryanodine. Analysis of the voltage dependence of block indicates that the interaction of ryanoids with RyR leads to an alteration in this parameter with an apparent relocation of the TEA+ blocking site within the voltage drop across the channel and an alteration in the affinity of the channel for the blocker. The degree of change of these parameters correlates broadly with the change in conductance of permeant cations induced by the ryanoids, indicating that modification of RyR channel structure by ryanoids is likely to underlie both phenomena.  相似文献   
999.
The pores of glutamate receptors and K(+) channels share sequence homology, suggesting a conserved secondary structure. Scanning mutagenesis with substitution of alanine and tryptophan in GluR6 channels was performed based on the structure of KcsA. Our assay used disruption of voltage-dependent polyamine block to test for changes in the packing of pore-forming regions. Alanine scanning from D567 to R603 revealed reduced rectification resulting from channel block in two regions. A periodic pattern from F575 to M589 aligned with the pore helix in KcsA, whereas a cluster of sensitive positions around Q590, a site regulated by RNA editing, mapped to the selectivity filter in KcsA. Tryptophan scanning from D567 to R603 revealed similar patterns, but with a complete disruption of spermine block for 7 out of the 37 positions and a pM dissociation constant for Q590W. Molecular modeling with KcsA coordinates showed that GluR6 pore helix mutants disrupting polyamine block pack against M1 and M2, and are not exposed in the ion channel pore. In the selectivity filter, tryptophan creates an aromatic cage consistent with the pM dissociation constant for Q590W. A scan with glutamate substitution was used to map the cytoplasmic entrance to the pore based on charge neutralization experiments, which established that E594 was uniquely required for high affinity polyamine block. In E594Q mutants, introduction of glutamate at positions S593-L600 restored polyamine block at positions corresponding to surface-exposed residues in KcsA. Our results reinforce proposals that the pore region of glutamate receptors contains a helix and pore loop analogous to that found in K(+) channels. At the cytoplasmic entrance of the channel, a negatively charged amino acid, located in an extended loop with solvent-exposed side chains, is required for high affinity polyamine block and probably attracts cations via a through space electrostatic mechanism.  相似文献   
1000.
A series of n-alkanols and phenyl-substituted n-alkanols (Φ-alkanols) of increasing chain length and phenol were characterized for their ability to block action potentials (APs) in frog sciatic nerves. APs were recorded using the single sucrose-gap method. The degree of AP attenuation when the nerve was exposed to different concentrations of an alcohol was used to construct dose-response curves. The reciprocals of the half-blocking doses (ED50s) were used to obtain a measure of the potency of the alcohols. For n-alkanols and Φ-alkanols, increasing the chain length by the addition of a methylene group increased the potency on average by 3.1 for both groups of alkanols. The addition of a phenyl group caused a potency increase that ranged between the values of 77 and 122. The ED50 for both groups of alkanols could not be solely predicted by the log octanol-water partition coefficient (K OW ). Using linear solvation energy relations (LSER), the log ED50 could be described as a linear combination of the intrinsic (van der Waals) molar volume (V I ), polarity (P), and hydrogen bond acceptor basicity (β) and donor acidity (α). Size alone could not predict the ED50 for both n-alkanols and Φ-alkanols. The results are consistent with the hypothesis that alkanols bind to and interact with Na channels to cause AP block. Phenyl group addition to an alkanol markedly increases the molecule's potency. Received: 11 August 2000/Revised: 21 December 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号